
Appendix I11 
111.1 Strain Energy Release Rate 

In this analysis, a delamination between belt and core sections is assumed to grow 
parallel to the belt direction in the tapered and uniform sections. These delaiilina- 
tions in each section are denoted by a and b respectively. The core section in the 
taper portion is modelled by two equivalent sublaminates. The stiffness properties 
are smeared to obtain the effective cracked and uncracked stiffnesses which are des- 
ignated by A, and A, as shown in Figure 111.1. These stiffnesses change from one 

ply drop group to another with crack growth a by experiencing a sudden change 
at discrete locations. Therefore A, and A, can be represented in three consecutive 
regions as follows: 

Region 1: 0 < a < 1 
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e Region 3: 21 < a < 31 

, 
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A,, = - 

a + b  

where 

h = ply thickness 

d = length of uniform thick portion 

1 = distance between t.wo coiisecutive ply drop locations 

--I1 = GhQ'" - 2hQ@ 

.43 = 2h.Q4j + 2hQ0 

ABD .= 7h.Q' + 2hQ45 

Qo = QI1 of a 0 degree ply 

Q" = QIi of a 1 4 5  degree ply 

Geoiiietry of the sub1aminat.e model is shown in Figure (111.1) 
Also axial stiffnesses A B ,  A,  and AF are given by 

(111.5) 
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Figure 111.1: Geometry. of the Sublanlinate Model 

AF = -43 

-4, .= -4BD 

where 

AB= =Taper belt. stiffness 

For a membrane behavior, equilibrium equations are reduced to 

N, ,=  0 

and t.he displaceiiient. field is assumed to be 

u ( 2 , z )  = U ( Z )  

and 

‘10 = 0 
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The constitutive relations are represented by 

The stress and displacement fields, are determined based on the stiffnesses derived 
in Equations(III.1-111.9). In this model, load is shared by the core and the belt. 
portions according to their respective stiffness ratios 

(111.14) 

(111.15) 

where P is half of the total axial load applied at. the ends. 
Using the Equations (111.10). (111.13): and the espressions for Pl and P? from 

Equations (111.14). (111.15) the axial displacement at .T = c can be n-ritfen as 

P(d + 31 - u )  A,  
+ ( A B  + A U T  - A,) 

(111.16) 

(111.17) 

where  AB^ is the belt stiffness in the pop-off region as shown in Figure 111.1. 
A three-dimensional transformation is required in order to estimate the effective 

axid stiffness of the belt. region 4 B  arid - 4 ~ ~ .  This is due t,o the belt. layup and 
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the orientation of the different belt portions to the loading axis as shown in Figure 
111.1. The three-dimensional transformation is presented in section 111.3. 

The tapered laminate is assumed to be fixed a t . 2  = 0. Therefore the external 
work done is given by 

w = PI us + P* us (111.18) 

Substitute from Equations (111.14) through (111.17) into Equation (111.18) to get 

+ ( o + b ) ( * + Z ) ]  AB1 (111.19) 

The strain energy release rate G due to the external work done is deternined 
by 

1 dTV c; = -- 
2P2 d A  

(11120) 

where A is the delamination surface area. G is calculated for delamination lengths 
ranging from 0 to 60h. In the analysis, S2/SP250 Glass-Epoxy is used. Its propert.ies 
are given in Table 111.1. 

Table 111.1: Material Properties of S2/SP250 Glass-Epoxy 

7.3 2.1 j 0.87 1 0.5 1 0.5 1 0.2'75 



. 
111.2 Interlaminar Stresses 

In this part, an analysis for the interlaminar stresses in the belt-core interface in 
the tapered section will is developed. 

The simple analytical model assumes a beam model for the belt in the tapered 
section which is shown in Figure 111.2 . Material and geometric discontinuities are 
modelled as extensional IC; and concentrated shear springs 9; (i=1-4) as shown in 
Figure 111.3. The resin pockets are assumed to be subjected primarily to shear stress 
and they are represented by a distributed shear spring with a constant- stiffness G. 
The effect of the core is incorporated as elast.ic supports on the beani-belt model. 

A minimuni compleinentary potential energy formulation is used t.0 estimate 
the interlaminar stresses. The total compleinentary potential energy consists of 
bending, shear and extensional energy contributions, 

where I&,: I?,. II,? HA. represent bending, shear and extensional energy coiiiponent s 

and energy stored in elastic springs, respectively. These are given as, 

(111.22) 

(111.23) 

(111.24) 
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Figure 111.2: Geometry of the Model 



Figure 111.3: Modelling of the Beam-Belt. 
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where R;, Ti (i=1,2,3,4) are unknowns. The constant shear stress,c, due to resin 
filler is an additional unknown. The total number of unknowns in this formulation 
is nine. These unknowns are constrained by following equilibrium equations. 

(111.26) 

(111.27) 

where N11: N12, N21 and AT22 denote the components of the extensional load a! two 

ends of the belt, section. 
The bending iiioiiiexit, shear force aiid asial force in each of the three ply drop 

regions are writ.t.en as  

Region 1: 0 < s < 1 

(111.29) 

(111.30) 

(111.31 ) 
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Region 2: I < 5 < 21 

ct t 
2 M ( s )  = -NIZS + -S + (R3 + R4)5 - R3Z + (2'3 + T4): 

V ( 5 )  = N12 - R3 - R4 

(111.32) 

(111.33) 

(111.34) 

*-Region 3: 21 < s < 31 

N ( s )  = Nil - cs - T2 - T3 - T4 (111.37) 

Therefore the bending energy in Equation (111.22) can be writt.eii as 
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(111.38) 

Similarly for the shear energy 

2 t 31 

ds (111.39) 
21 

where . - 

3 T = -  
5G2A 

The energ1 of est.ensiona1 ioads car1 be espressecl I)? 

1 ’  II, = -1 (Nll - cs - T4)’d5 + - 
2A,l 2-41, 

The energy stored in the elastic springs is written as 

(111.40) 
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The complementary potential energy in Equations (111.38) through (111.41) is . ex- 
pressed in terms of 6 unknowns, namely R3, R4,  T; (i=2,3,4) and c. By minimizing 
these expressions the following system of linear equations is obtained 

( 27t213 i- 31 912) C +  -R3 ti3 +-R4 5t13 + (x 5t212 $. :) T2 + ($ - E) T3 
1 2 0  G2 91 D 2 0  

(111.42 1 
91 

+ -T3 t i 2  + ET, = (- 313 + - 2 + 2) fiI2 : 2 N 2 2  

2 0  2 0  kl b2 kl 2 0  

(111.43) 

5tZ3 313 2 - + - + - - j -  413 4 9 t12 Stl’ --c + (- + - + 2) R3 + ( 2 0  2 0  kl b2 bl 122 k;1 4 0  
I )  R4 + =T2 - -T3 

2N22 t12 
2 0  GD (111.14) 
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t12 1 1  5t212 t12 (80 + f ) C + -R3 40 + -R4 2 0  + (g +z  + G )  T2 + (g + k) T3 

tl 1 tZl  
+ (" 4 0  91 ') T4 = -R12 2 0  + -(Nil 91 - N Z 1 )  + -(ATll 8D - ATzl) (111.45) 

2 0  91 g3 

t12 (" + ") C +  -R3 + s R 4  + (5 + 1) T~ + (5 + - + - T, 
D 91 2 0  4 0  4 0  91 

5t12 1 t21 

2 0  91 4 0  91 8D + (" + ') T' = -N12 + -(ATll - Nz1) + -(fill - xZl) (111.46) 

t21 
16 D +--(N11 - N21) (111.1 7 )  

The concentrated normal and shear forces at the ply drop regions and the int.er- 

laininar shear in the resin filler are estimated by solving the simultaneous system of 

equations in (111.42) through (111.4i) and using' Equation (111.26) through (111.2s). 

. 
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111.3 3-D Transformation of Stiffnesses 

It has been determined that a three dimensional transformation of stiffnesses is 
required in order to estimate the effective axial stiffness of the belt regions, A B  and 
A s l .  This is due to the belt layup and the orientation of the different belt portions 
to the loading a x i s  as shown in Figure 111.4. 

The loading axis corresponds to axis 1 in the 123 coordinate system which is the 

transformed system. The principal material coordinates are denoted by 1',2' 2nd 

3'. 
The stress-strain relationships in the principal material coordinates €or an or- 

thotropic laminate are given by 

{ z } 6 x 1  = [Q]6x6 { z } 6 x 1  (111.48) 

where 

Q.3 = (1 - V12V21)17E33 (111.51 i 
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*3 - 2 '12 1/13 1/31 ) (1113) 

The presence of angle plies in the belt. region xilaking an angle 8 in tile l'L''-plane 

results in t.he following constitutive relatiollship 

{a'} = [GI { e ' }  (111.59 ) 

where the transformed reduced stiffnesses Gij are given in terlns of reduced st.iff- 
nesses Q;j as 

- 
4 

Q11 = C Q11 + 2c2s2Q12 4- S'Q22 -!- 4C2s2Q66 

Q22 = s4Ql1 + 2c2s2Q12 + c4QZ2 + 4c2s2QGs 

(IKGO) 

(III.Gl) 
- 



s = sin$ 
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(111.64) 

(111.65) 

(111.66) 

Any ply in the belt portion of the taper makes an angle ,8 with the loading axis 
if it is in the uncracked belt, portion and an angle a if it is in the cracked belt. 
portion. By performing a rotation about the 2-axis, the stiffness along the loading 
axis , takes the form 

{Q} = [C] ( E }  (111.67) 

where C T ; ~  and 6i-j are in 123-asis spstseiii and cI,z represent the eleinerits of t rans-  

formed stiffness matrix in this coordinate system. 
Since we liave assumed 

(111.68) 

and 

29 = 0 (111.69) 

For plane stress condition in 1-3 plane (i.e. ui2 = 0 ; i =1,2,3) st,ress srrain 
relations reduce t.0 

Q11 = ( G I  - c:,/c24 E11 (111.70) 
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where 

Cll = Z'Qll + 2c -2-2- s Q13 + 4- s Qa + -2-2- c s Q55 (111.71 ) 

(212 = Z2Q12 +S2Q2, (111.72) 

- 
C22 = Q22 (111.73) 

where E and S are cosine and sine of the angle which the cracked and uncracked belt. 
portions makes with the loading axis. 

The coefficient of ell in Equation (111.70) represents the transformed axial stiff- 
ness. This value is used in the derivation of AB and  AB^. 


